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[1] The National Aeronautics and Space Administration Global Modeling and
Assimilation Office (NASA/GMAO) observing system simulation experiment (OSSE)
framework is used to explore the response of analysis error and forecast skill to
observation quality. In an OSSE, synthetic observations may be created that have much
smaller error than real observations, and precisely quantified error may be applied to
these synthetic observations. Three experiments are performed in which synthetic
observations with magnitudes of applied observation error that vary from zero to twice
the estimated realistic error are ingested into the Goddard Earth Observing System Model
(GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation for a 1 month
period representing July. The analysis increment and observation innovation are strongly
impacted by observation error, with much larger variances for increased observation
error. The analysis quality is degraded by increased observation error, but the change in
root-mean-square error of the analysis state is small relative to the total analysis error.
Surprisingly, in the 120 h forecast, increased observation error only yields a slight decline
in forecast skill in the extratropics and no discernible degradation of forecast skill in
the tropics.
Citation: Privé, N. C., R. M. Errico, and K.-S. Tai (2013), The influence of observation errors on analysis error and forecast skill
investigated with an observing system simulation experiment, J. Geophys. Res. Atmos., 118, 5332–5346, doi:10.1002/jgrd.50452.

1. Introduction
[2] There are multiple sources of error in numerical

weather analysis and prediction including model error,
observation instrument and representativeness error, errors
introduced by the data-assimilation process itself, and
physical-dynamical error growth. Because the true state
of the atmosphere remains unknown, it is not possible to
directly assess these errors or their impact on analysis quality
or forecast skill. Many efforts have been made to investi-
gate the impact of initial condition errors on forecast skill,
such as with idealized identical or fraternal twin experiments
[e.g., Tribbia and Baumhefner, 2004], but these studies have
not considered errors in the context of data-assimilation
systems.

[3] Previous studies [e.g., Tyndall et al. 2010; Irvine et al.
2011] have examined the role of observation error in data
assimilation, primarily in the form of the weighting of obser-
vational data versus the background. Changing the specified
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observation error variance or background error variance in
a data-assimilation system (DAS) alters how closely the
analysis field draws to the observations compared to the
background. This study instead is focused primarily on how
the observation errors themselves impact qualities of the
model analysis and forecast fields.

[4] There are many unanswered quantitative and quali-
tative questions about how observation error impacts the
errors of analysis and subsequent forecasts given that the
DAS is designed as an error filter and smoother [Daley,
1991]. Modern DAS are based on elegant mathematical
theory, as outlined in the Appendix, that unfortunately offers
only limited insight into answers to these questions because
of the many unsupported assumptions generally implied for
their computationally efficient application. Answers are also
not forthcoming when using real observations since in that
context the true state being analyzed is not sufficiently well
known. In contrast, an observing system simulation exper-
iment (OSSE) alleviates many of these difficulties since
relevant errors can be directly calculated from the accu-
rately known truth provided [Errico et al., 2013]. As long
as the OSSE is a faithful simulation of reality, it can provide
valuable insight into these questions.

[5] An OSSE suitable for this problem has been devel-
oped at the National Aeronautics and Space Administration
(NASA) Global Modeling and Assimilation Office (GMAO;
Errico et al. [2013]; Privé et al. [2013]). It provides a tool
for investigating how errors in sources of information or
algorithms impact the analysis, background, and forecast
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errors. In addition, the observation errors in an OSSE can
be directly manipulated to explore the impact of observation
error on the analysis quality and forecast skill. In this work,
a series of experiments with varied observation error are
performed using the GMAO OSSE to explore the influence
of observation error in an operational numerical weather
forecasting system.

[6] The motivating factors for this study include both the
design of OSSEs and the effects of observation error when
assimilating real observations. The development of realis-
tic observation errors for synthetic observations in OSSEs
has been a challenging problem for decades. Here, the
importance of accurately representing observation errors is
investigated by testing the response of the OSSE framework
to a range of observation error magnitudes from minimiza-
tion of observation errors to gross overestimation of obser-
vation errors. A variety of metrics are employed, including
explicit measures of analysis error. The importance of proper
weighting of error covariance matrices is also explored.

[7] Details of the GMAO OSSE framework and the
experimental setup are given in section 2. The influence
of observation error on increment and error statistics of
the data-assimilation products is described in section 3.
Likewise, the effect of observation error on forecast skill
is presented in section 4 and on observation impact metrics
calculated with an adjoint model in section 5. Finally, the
results are discussed in section 6.

2. Setup
[8] The GMAO OSSE framework is used for all exper-

iments. This system is described in detail by Errico et al.
[2013]; a brief synopsis will be given here. An OSSE con-
sists of several components: a long, free model integration
called the Nature Run (NR) that represents the “truth”; a
set of synthetic observations produced from the Nature Run
fields for all data types currently assimilated to create initial
conditions for numerical weather prediction; an observa-
tion error algorithm to add otherwise missing instrument
and representativeness errors to observations; and a data-
assimilation system employing a second forecast model for
ingesting the synthetic observations.

[9] The NR used for the GMAO OSSE was generated
by the European Centre for Medium-Range Weather Fore-
casts (ECMWF) using the c31r1 version of their operational
forecasting model. The model was freely run from 01 May
2005 to 31 May 2006 at T511 resolution with 91 vertical
levels and 3 hourly output. Prescribed boundary conditions
included the sea surface temperature and sea ice content
observed during the NR period; all other fields were gener-
ated by the ECMWF model. The NR has been evaluated to
ensure that the model characteristics are suitable for use in
OSSEs [Reale et al., 2007; McCarty et al., 2012].

[10] Synthetic observations were created at the GMAO
for both conventional and radiance data types. Conventional
data were computed by interpolating the NR fields according
to the temporal and spatial locations of archived observa-
tions from corresponding dates during 2005–2006. Radiance
observations were similarly generated using the Community
Radiative Transfer Model version 1.2 (CRTM; Han et al.
[2006]) with a simplified treatment of the clouds based on
cloud fractions from the NR.

[11] A set of baseline observation errors were calibrated
to match some assimilation statistics of real data ingested
into the same versions of GSI and GEOS-5. Uncorrelated
errors were added to all observation types, and an additional
component of correlated errors was added to some types.
Vertically correlated errors were added to conventional
sounding data types; horizontally correlated errors were
added to Advanced Microwave Sounding Unit (AMSU),
High-resolution Infrared Sounder (HIRS), and Microwave
Sounding Unit (MSU) observations; channel correlated
errors were added to Atmospheric Infrared Sounder (AIRS)
observations and both vertically and horizontally correlated
errors were added to satellite wind observations. No correla-
tion of errors was applied between different data types, and
no observation error bias was added. The observation errors
were calibrated so that covariances of observation inno-
vations and variances of analysis increments in the OSSE
matched corresponding statistics computed for the DAS
applied to real observations [Errico et al., 2013]. As a result
of this tuning, the added errors may contain compensations
due to mismatches between the OSSE and real observation
results of actual background error covariances.

[12] In addition to explicitly added errors, the synthetic
observations contain a small but unspecified quantity of
implicit representativeness error. This error arises from
differences between interpolations used to create the syn-
thetic observations applied on the NR and DAS model
grids. Errors are also introduced to the radiance observa-
tions through differences between treatments of cloud in
the radiative transfer schemes applied to the NR and DAS
gridded fields.

[13] The numerical weather prediction model used for the
OSSE experiments is the Goddard Earth Observing System
Model, Version 5 (GEOS-5) with Gridpoint Statistical Inter-
polation (GSI) data-assimilation system [Kleist et al., 2009;
Rienecker et al., 2008]. The model resolution is 0.5ı latitude
and 0.625ı longitude with 72 vertical levels. The behavior of
the OSSE forecasts has been validated in comparison to real-
ity by Privé et al. [2013], where it was found that the forecast
skill of the OSSE is slightly better than for real data, but the
relative impact of different data types is well represented.

[14] For these experiments, the OSSE is cycled from
15 June 2005 to 05 August 2006, with 120 h forecasts
launched daily at 0000 UTC. The first 2 weeks are dis-
carded as a spin-up period, and results are calculated only
for the month of July. Three experimental cases are tested:
a Control case using the baseline set of synthetic observa-
tions with calibrated observation errors described by Errico
et al. [2013]; a Perfect case in which no errors are added to
the synthetic observations; and a case in which observation
errors with standard deviation twice the magnitude as the
Control case are added to the synthetic observations, called
the Double case. The explicitly added errors in the Double
case are perfectly correlated to the errors in the Control case,
with twice the magnitude. Table 1 displays the attributes of
all of the experimental cases included in this study. These
three cases can be compared to show the progression of the
effects of observation errors as the errors are increased from
near zero to large values.

[15] For Perfect, Control, and Double cases, the back-
ground and observation error covariances assumed by the
GSI are not altered from the operational values. This pre-
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Table 1. List of Experimentsa

Data Added Obs Err � GSI Obs Err �

Control synthetic standard operational
Perfect synthetic none operational
Double synthetic 2� standard operational
Double GSI Adjusted synthetic 2� standard 2� operational
Real real none operational
Real Plus Error real standard operational

aDescription of all OSSE cases included in this manuscript. Data types
are synthetic (OSSE) or real (archived observations). “Added Obs Err �”
refers to the standard deviation of synthetic observation error explic-
itly applied to either real or synthetic observations, with “standard” the
calibrated observation error standard deviations calculated as in Errico et al.
[2013]. “GSI Obs Err �” refers to the standard deviations of observation
errors used by the GSI data-assimilation system, with “operational” the
values used in the operational version of the GSI from 2011.

serves the GSI Kalman gain matrix and thus the weightings
between observations and background. For none of these
three OSSE experiments is this Kalman gain truly optimal
since the assumed error covariances are not the actual ones.
Even for assimilation of real observations, the specified
background error covariance likely differs from the actual
covariances for some components, and the specified obser-

vation error ignores significant correlations known to exist
for some observation types and instead grossly inflates
the assumed error variances to partly compensate for this
neglect. For the Perfect and Double cases, the departures
from optimality may be greater, but even in these cases
more optimality would require use of a retuned assumed
background error covariance. Such retuning would partly
offset use of a more appropriate assumed observation
error variance. For any of the experiments, assumption of
truly accurate error covariances would produce the opti-
mal analysis; i.e., analysis with minimum expected error
variance given the observation and background errors.
Results from these experiments therefore provide an upper
bound on what the corresponding optimal error variances
would be.

[16] An additional experiment is performed using the
added observation errors from the Double case, but with
the standard deviations of observation errors used by the
GSI increased by a factor of 2, denoted as the “Double
GSI Adjusted” case. While this also does not result in an
identical match between the true observation error covari-
ances and the GSI error covariances, some underestima-
tion of observation error covariances by the GSI in the
Double case should be relieved in this case. A case with
greatly reduced GSI error using the synthetic observations
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Figure 1. Variance of observation innovation for July 2005. (a) Rawinsonde temperature observations;
(b) rawinsonde zonal wind observations; (c) GOES IR cloud drift zonal wind observations; (d) AMSU-A
NOAA-15 observations. Stars, Perfect case; circles, Control case; triangles, Double case.
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Figure 2. Square root of the zonal mean of temporal variance of analysis minus background T, K for
July 2005. (a) Perfect, (b) Control, (c) Double, (d) Real.

with no explicitly added error is not performed due to
concerns that the data-assimilation algorithm would become
ill conditioned.

[17] For validation of certain analysis and forecast statis-
tics, a parallel case is run using archived real data from the
same time period instead of the synthetic observations. This
case is designated as Real, and is run using the same GEOS-
5 and GSI version and settings as deployed in the OSSE. The
analog of the Real case in the OSSE environment is the Con-
trol case, as the explicitly added observation errors in the
Control case have been calibrated to specifically match the
observation innovations and analysis increments in the Real
case. A “Real Plus Error” case is performed analogously to
the Double case, wherein errors of the real observations are
increased by explicitly adding errors with the same covari-
ances used in the Control case to the real data. In this case,
the observation error covariances are not expected to be
identical to those used in the Double case, but the impacts
of significantly increasing the observation error may be
checked to ensure that the OSSE results are not unrealistic.

[18] The background error covariances used by the GSI
are taken to be the operational 2011 GSI/GEOS-5 covari-
ances for all experiments. Due to improvements in the
observing network between 2005 and 2011, these back-
ground error covariances may underestimate the true back-
ground errors when working with the 2005 observational
data set. In addition, the true background error covariances
may differ between experimental cases due to ingestion of
different qualities of observation errors.

3. Analysis Quality
[19] The observation innovation, di , measures the differ-

ences between observations and the background state,

di = yo
i – Hi[xf(ti))] (1)

where ti is the time, yo
i is the observation vector, xf is the

forecast model state vector, and H is an observation oper-
ator in standard notation [Ide et al., 1997]. Observation
innovation statistics are expected to be strongly affected
by the magnitude of observation errors, as yo

i is directly
affected by observation error and xf(ti) is indirectly affected
by observation error that has been ingested in earlier cycles
of the DAS.

[20] The analysis increment, or analysis minus back-
ground (xa(ti) – xf(ti)), measures the amount of “work” done
by the data-assimilation system in generating an analysis
state from the initial background state. The root-mean-
square error (RMSE) of such a difference is calculated as an
areal and temporal mean

RMSEI =

vuutPN
i=1
R �e
�w

R �n
�s

(xa(ti) – xf(ti))2R2
e cos�d�d�

N
R �e
�w

R �n
�s

R2
e cos�d�d�

(2)

where xa is the analysis field and xf is the background field
for N analysis states, Re is the radius of the earth, � is the
latitude between �s and �n, and � is the longitude between
�w and �e.
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Figure 3. Square root of the zonal mean of temporal variance of analysis minus background zonal wind,
m s–1, for July 2005. (a) Perfect, (b) Control, (c) Double, (d) Real.

[21] Figure 1 shows a sampling of global variances of
observation innovation for the Perfect, Control, and Double
experimental cases for rawinsonde (RAOB) temperature and
wind, GOES infrared (IR) cloud drift winds, and AMSU-A
brightness temperatures. The variance of observation inno-
vations for the Control case is intermediate to that seen for
the Perfect and Double cases.

[22] If the true error covariances of the background, B,
were the same for the three test cases and if the explicitly
added observation errors are uncorrelated with the back-
ground errors, then the difference in variances of observation
innovation between each pair of cases is simply the differ-
ence in the variances of the observation errors themselves.
As the standard deviation of the observation error in the
Double case is twice the standard deviation of the obser-
vation error in the Control case, it would be expected that
the difference in variance of observation innovation between
the Double and Perfect cases would be 4 times as large
as the difference between the Perfect and Control cases.
This expected relation between observation innovation vari-
ances in the three experimental cases is seen for RAOB
temperatures and winds and for AMSU-A in Figure 1,
implying that changes to the background error covariances
are relatively small.

[23] Results for GOES IR cloud drift winds show too
large a difference between Perfect and Double observation
innovation variances compared to Control and Perfect in the
lower troposphere, and too small a difference in the middle

and upper troposphere compared to the expected ratio of dif-
ferences. In the upper troposphere, the ingested observation
counts for the GOES cloud-drift winds are 20–30% smaller
in the Double case than in the Perfect case, indicating that
the quality control of the GSI has acted to remove some of
the observations with very large observation errors. Thus,
the observation error variance of the accepted observations
is smaller than the variance of the observation errors applied
to the entire data set for the Double case, reducing the dif-
ference between the Perfect and Double cases. In the lower
troposphere, the larger than expected difference between the
observation innovation variance for the Perfect and Double
cases indicates that the background error of the Double case
may have increased significantly between the Perfect and
Double cases in this region. Examination of the background
error fields (not shown) does indicate a significant increase
in background error in the zonal wind field at low levels.

[24] When the observation error is increased, the spatial
distribution of the analysis increment variance is retained as
the magnitude of the variance increases. This is illustrated
in Figures 2 and 3 for the square roots of the zonal means
of the temporal variances of analysis increments of temper-
ature and zonal wind, respectively. The analysis increment
variance of the Control case has been calibrated to emulate
the Real analysis increments; the Double case has greater
variance than Real and the Perfect case significantly lower
variance than Real. The change in the variance of analy-
sis increment between Perfect and Double is on the order
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Figure 4. |Ae| – |Be| for T, K (top) and u, m s–1 (bottom), for July 2005. Dash-dotted line, Perfect case;
thick solid line, Control case; dashed line, Double case; thin solid line, Double Adjusted GSI case. (a, d)
30ıN–90ıN; (b, e) 30ıS–90ıS; (c, f) 30ıS–30ıN.

of 30–50% increase in the upper troposphere and 25–100%
increase in the lower troposphere. The relative impact of
observation errors on the analysis increment is considerably
smaller than the impact seen on the observation innovation
as expected since the data-assimilation algorithm acts as a
filter and smoother of observation errors [Daley, 1991].

[25] The change in the error of the model state due
to assimilation of observations is measured by taking the
difference of the absolute value of the analysis error and the
absolute value of the background error,

|Ae|–|Be|=

R �e
�w

R �n
�s

PN
i=1(|xa(ti) – xt(ti)|–|xf(ti) –xt(ti)|)R2

e cos�d�d�

N
R �e
�w

R �n
�s

R2
e cos�d�d�

(3)

as in (2) where xt is the true Nature Run state. This metric is
selected because it indicates whether the change introduced
by the data-assimilation process works to improve the anal-
ysis or to degrade the analysis, or if the net impact is neutral.
Negative values indicate an improvement of the state due to
assimilation of observations, while positive values indicate
a degradation of the state.

[26] The monthly mean of |Ae| – |Be| for July is shown
in Figure 4. For the temperature field, the assimilation
improves upon the background state throughout the

troposphere, and the observation errors do not strongly affect
the magnitude of improvement. However, the wind fields
show a much stronger response to the observation error, with
significantly different results for the Perfect, Control, and
Double cases. While the greatest improvement in the model
state is seen for the Perfect case, the Control case also shows
overall improvement due to observation assimilation. For
the Double case, however, the observations in the middle and
lower troposphere tend to cause a degradation of the back-
ground wind field, resulting in a lower quality analysis than
if the observations had not been assimilated; this is most
notable in the Northern Hemisphere and the tropics. This
degradation of the background state ideally should not occur
if the background and observation error covariances used by
the DAS were correct; in the Double case, it is known that
the actual observation error variances are greater than the
variances used by the GSI for some data types.

[27] The RMSE of the analysis is calculated for July

RMSEA =

vuutPN
i=1
R �e
�w

R �n
�s

(xa(ti) – xt(ti))2R2
e cos�d�d�

N
R �e
�w

R �n
�s

R2
e cos�d�d�

(4)

as in (3), plotted for temperature and zonal wind in Figure 5.
Only a minor difference (2–3%) is seen in this analysis
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Figure 5. Root-mean-square analysis error for T, K (top) and u, m s–1 (bottom), for July 2005. Dash-
dotted line, Perfect case; thick solid line, Control case; dashed line, Double case; thin solid line, Double
Adjusted GSI case. (a, d) 30ıN–90ıN; (b, e) 30ıS–90ıS; (c, f) 30ıS–30ıN.

error statistic between the Perfect and Control cases for tem-
perature, but a slightly larger increase in temperature error
(5–10%) for the Double case is noted, with similar levels of
change in the tropics and extratropics. The analysis error for
zonal wind shows a larger spread between experiments, with
a 5–10% increase in error in the Control compared to the Per-
fect case, and a 10–30% increase in analysis error between
the Control and Double cases. The greatest percent change
in error of the analysis wind field is found in the Northern
Hemisphere extratropics, and the least change in the tropi-
cal midtroposphere and upper troposphere. The large change
in the Northern Hemisphere extratropical wind field error is
consistent with the finding that the data-assimilation process
acts to degrade the winds in this region for the Double case
(Figure 4).

[28] As previously described, the Double Adjusted GSI
case is performed with the same observation errors used in
the Double case, but with the standard deviations of obser-
vation errors used by the GSI multiplied by 2. The results
from this case do not show a marked improvement in anal-
ysis skill compared to the Double case; instead there is a
small increase in analysis error for wind and temperature
in the Southern Hemisphere extratropics (thin solid line in
Figure 5). Comparing the dashed and thin solid lines in
Figure 4 shows that the improvement of the analysis state

compared to the background state is nearly the same in the
Double and Double Adjusted GSI cases.

[29] A discussion of the impacts of mismatched true
observation error and DAS-assumed observation errors is
given in the Appendix. One cause of the increased analysis
error in the Double Adjusted GSI case is persistent model
error due to differences in the preferred climatology of the
ECMWF Nature Run and the GEOS-5 models. Because the
assimilation does not draw as strongly to the observations in
the Double Adjusted GSI case, in regions where there is a
large difference in the model climatologies, the analysis state
retains more of this GEOS-5 model “bias” than the Double
case. The error covariances for both background and obser-
vation errors are not ideal for either the Double or Double
Adjusted GSI cases. In the Double Adjusted GSI case in
particular, the background error covariances may be under-
estimated, resulting in an analysis that is drawn too strongly
to an erroneous background.

[30] The spatially averaged monthly mean correlationsbr
of the analysis error fields between the Control and Perfect,
Control and Double, and Perfect and Double case pairs are
calculated as

Ae(�,�) = xa(�,�) – xt(�,�) (5)
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Figure 6. Spatial correlation of analysis error fields for T (top) and zonal wind u (bottom) for July 2005.
Dash-dotted line, Perfect and Double cases; solid line, Control and Perfect cases; dashed line, Control
and Double cases. (a, d) 30ıN–90ıN; (b, e) 30ıS–90ıS; (c, f) 30ıS–30ıN.

r1,2(�,�)

=
PN

i=1(Ae1(�,�) – Ae1(�,�))(Ae2(�,�) – Ae2(�,�))qPN
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PN
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�s

r1,2(�,�)R2
e cos�d�d�R �e

�w

R �n
�s

R2
e cos�d�d�

(7)

with notation as in (4), with the overbar indicating a time
mean. The correlations of the analysis error fields shown in
Figure 6 are fairly high overall, particularly near the surface
for temperature. This implies that model error growth con-
tributes significantly to the total analysis error field, while
the observation errors and their growth do not dominate the
total error. If the observation errors introduced in the current
cycle were a large source of analysis error, the correlation
between the Control or Double cases would be expected to
be larger than the correlations between the Perfect case and
either of the Control of Double cases. This is because the
added observation errors in the Control and Double cases
are identical except for a proportionality factor. The magni-
tude of the correlations of the analyses for the Control versus
Perfect and Control versus Double cases are very similar,

implying that the dominant differences in the analysis error
fields are due to the growth of observation and model errors
from previous cycles and that the immediate contribution
of observation error from the current cycle is modest. This
is consistent with the data-assimilation design property that
acts to filter spatially uncorrelated observation errors, which
are the dominant type of observation error.

4. Forecast Skill
[31] Forecast skill in the midlatitudes is often measured by

the anomaly correlation of 500 hPa geopotential. Anomaly
correlation coefficients are calculated for the 120 h fore-
casts starting at 0000 UTC from 02 July to 30 July 2005
for each experimental case. The resulting monthly means
and standard deviations of anomaly correlations are listed
in Table 2. A Wilcoxon paired test p value indicating the
probability that the null hypothesis is true is calculated to
determine if the mean anomaly correlation of an experiment
is different from the Control case mean; values of p < 0.05
indicate significance at the 95% level. With once daily fore-
casts on sequential days, the anomaly correlation scores
may be serially correlated in time. The autocorrelation r in
Table 2 gives an indication of the degree of serial correlation.
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Table 2. The 500 hPa Geopotential Anomaly Correlations at 5 Daysa

Northern Hemisphere Southern Hemisphere

Mean � p r Mean � p r

Control 0.81 0.06 0.81 0.10
Perfect 0.81 0.06 0.84 0.30 0.82 0.10 0.01 –0.36
Double 0.78 0.08 0.00 0.13 0.79 0.09 0.08 0.27
Real 0.78 0.06 0.77 0.09
Real Plus Error 0.77 0.05 0.28 0.39 0.74 0.09 0.02 0.37

aJuly 2005 monthly mean and standard deviation (�) 500 hPa geopotential anomaly correlation coefficients at the
120 h forecast. Wilcoxon paired rank test p indicating significance level at which the mean anomaly correlation is
different from the Control case mean (for Perfect and Double) or different from the Real case mean (for Real Plus
Error). Autocorrelation r of the difference between the Control case mean and experimental case mean (for Perfect
and Double) or between the Real and Real Plus Error cases.

For most comparisons that show statistically significant
results at the 95% level, the autocorrelation is small or even
negative, indicating that the results of the Wilcoxon paired
test are valid [Yue and Wang, 2002].

[32] The 5 day anomaly correlations show an overall
insensitivity of forecast skill to observation error. When the
Perfect case is compared to the Control case, there is a
slight improvement in the Southern Hemisphere anomaly
correlation that is statistically significant, but no improve-
ment is seen for the Northern Hemisphere skill. When the

observation error is increased further in the Double case,
a reduction in anomaly correlation is seen in both hemi-
spheres, but the reduction is only significant at the 95%
level in the Northern Hemisphere. The reduction in anomaly
correlation compared to the Control for the Double case is
larger than the difference in anomaly correlation between the
Perfect and Control cases (range of 0.02–0.03 in comparison
to 0–0.01).

[33] The 120 h forecast anomaly correlations for the Real
and Real Plus Error cases are also given in Table 2. A slight
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Figure 7. Root-mean-square 120 h forecast error for T, K (top) and u, m s–1 (bottom), for July 2005.
Dash-dotted line, Perfect case; solid line, Control case; dashed line, Double case. (a, d) 30ıN–90ıN; (b, e)
30ıS–90ıS; (c, f) 30ıS–30ıN.
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Figure 8. Spatial correlation of 120 h forecast error fields for T (top) and zonal wind u (bottom) for
July 2005. Dash-dotted line, Perfect and Double cases; solid line, Control and Perfect cases; dashed line,
Control and Double cases. (a, d) 30ıN–90ıN; (b, e) 30ıS–90ıS; (c, f) 30ıS–30ıN.

decrease in forecast skill is seen in the Northern Hemi-
sphere for the Real Plus Error compared to Real case, but
this decrease is not statistically significant. A larger decrease
in forecast skill is seen in the Southern Hemisphere, sta-
tistically significant at the 95% level, although the serial
correlation is relatively high, which may result in overin-
flated significance estimates. The influence of observation
errors on forecast skill for the real data is similar to that seen
in the OSSE, i.e., a relatively small degradation of anomaly
correlation scores between 0.01 and 0.03.

[34] The root-mean-square forecast error at 120 h verified
against the Nature Run is calculated for the month of July as
with the analysis error:

RMSEF =

vuutPN
i=1
R �e
�w

R �n
�s

(xf(ti) – xt(ti))2R2
e cos�d�d�

N
R �e
�w

R �n
�s

R2
e cos�d�d�

(8)

where there are N forecasts, and other variables are as in (4).
Forecast error is plotted as a function of vertical level for
temperature and zonal winds in Figure 7. In the tropics, there
is no discernable difference in the forecast skill between the
Perfect, Control, or Double cases. The Northern Hemisphere
shows no difference in skill between the Perfect and Control
cases but an increase in error of 5% for the Double case.
Only in the Southern Hemisphere is there a clear, but small,

progression of forecast skill degradation as the observation
error increases 3–4% from the Perfect case to the Control
case and then increases an additional 4–8% from the Control
to the Double case.

[35] The spatial correlation of the 120 h forecast error
fields is calculated as in (5) but using xf instead of xa as
a function of model level for three pairings: Perfect and
Control, Control and Double, and Perfect and Double; the
results are plotted in Figure 8. The correlations between
the pairing Perfect and Control and the pairing Control and
Double are generally in the range of 0.7 to 0.75 throughout
the troposphere, while correlations are lower, near 0.6, for
the pairing Perfect and Double. To put this in perspective,
a wave that is forecast to be 53ı out of phase will have a
correlation of 0.6.

[36] When the forecast error correlations are compared
with the analysis error correlations (Figure 6), several
differences are noted. First, in the midlatitudes, the correla-
tions in the lower troposphere are smaller for the forecast
error compared to the analysis error. At the analysis time,
the near-surface error is likely to be dominated by rep-
resentativeness error and mismatches in model orography
and boundary layer treatment between the GEOS-5 and
Nature Run, resulting in very high correlations between the
three cases. During forward model integration, some errors

5341



PRIVÉ ET AL.: OBSERVATION ERROR IN AN OSSE

0 24 48 72 96 120
0

5

10

15
x 104

Forecast Hour
D

E
N

30N−90Na)

0 24 48 72 96 120

0

0.1

0.2

0.3

0 24 48 72 96 120

0

0.1

0.2

0.3

0 24 48 72 96 120

0

0.1

0.2

0.3

Forecast Hour

D
E

N
 D

iff
er

en
ce

30N−90Nb)

0 24 48 72 96 120
0

1

2

3

x 105

Forecast Hour

D
E

N

90S−30Sc)

Forecast Hour

D
E

N
 D

iff
er

en
ce

90S−30Sd)

0 24 48 72 96 120
0

2

4

6

8
x 104

Forecast Hour

D
E

N

30S−30Ne)

Forecast Hour

D
E

N
 D

iff
er

en
ce

30N−30Sf)

Figure 9. (left) Dry energy norm as a function of forecast hour; dashed line, Double case; solid line,
Control case; dash-dotted line, Perfect case. (right) Difference in dry energy norm between cases as a
function of forecast hour normalized by Control case; dash-dotted line, Control minus Perfect cases;
dashed line, Double minus Control cases. (a, b) 30ıN–90ıN; (c, d) 30ıS–90ıS; (e, f) 30ıS–30ıN.

increase nonlinearly, resulting in smaller correlations at the
5 day forecast time.

[37] In the middle and upper troposphere, the 120 h fore-
cast errors have slightly higher correlations between cases
than the analysis error fields. At these levels, representative-
ness errors play a smaller role at analysis time and random
observational error a larger role. During model integration,
some errors are damped or destroyed by model processes,
while other errors project onto unstable modes of the atmo-
spheric state and grow with time. It is anticipated that as
the forecast length is extended beyond 120 h, the forecast
error correlations would eventually decline and asymptote to
a small positive number.

[38] The vertically integrated dry energy norm (DEN,
Errico [2000]) is calculated for each experimental case and
plotted as a function of forecast time in Figure 9.

DEN =

R pt
ps

R �e
�w

R �n
�s

�
(u2 + v2) + cp

Tr
T2
�

R2
ecos(�)d�d�dp

2
R pt

ps

R �e
�w

R �n
�s

R2
ecos(�)d�d�dp

(9)

as in (4), where u, v, and T are the perturbations of the
wind and temperature fields from the truth, ps is the sur-
face pressure, and pt is the pressure at the top of the chosen
volume, here taken to be the model level closest to 72 hPa;
cp = 1005 J kg–1 K–1 is the specific heat of dry air, and

Tr = 286 K is a reference temperature. The small contribu-
tion to DEN from surface pressure perturbations included in
the more usual definition of the dry energy norm is neglected
from (9).

[39] The error growth in the tropics (Figure 9e) shows
initial rapid growth of error that then flattens out after 48 h
before increasing again after 96 h, while the extratropical
error growth is initially slow and then accelerates with fore-
cast time. Comparing the Control and Perfect cases, the
difference in DEN declines or remains steady as the forecast
progresses, with the Control case actually having lower DEN
than the Perfect case by 96 h in the Northern Hemisphere.
The Control versus Double case shows greater difference
in DEN, but this difference likewise decreases with time. It
is expected that if the forecast period were lengthened, the
DEN would eventually saturate, and the difference in DEN
between cases would approach zero [Leith, 1974].

5. Observation Impact
[40] One set of metrics that are often of great interest

when performing an OSSE is the data impacts of various
observation types. For the GEOS-5 model, a dry adjoint
is available that can be used to efficiently determine esti-
mates of these impacts on the 24 h forecast [Gelaro and
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Figure 10. Adjoint calculations of observation impact on dry energy norm. White bars, Perfect case;
gray bars, Control case; black bars, Double case; lines indicate 95% confidence intervals. Note reversed
direction of x axis. (left) Northern Hemisphere extratropics; (center) Southern Hemisphere extratropics;
(right) tropics.

Zhu, 2009] using DEN as the norm. Figure 10 compares
the observation impacts for a variety of observation types in
the Perfect, Control, and Double cases. A negative impact
indicates a reduction in the 24 h forecast error. The obser-
vation impact is calculated using the Nature Run fields to
verify the 24 h forecasts and not the analysis fields that are
often used for real observations. The differences between
verifying the observation impact against the Nature Run
instead of the analyses are generally minor, although with
verification against the Nature Run, rawinsonde temperature
observations have a significantly larger impact.

[41] The overall observation impacts seen in Figure 10
show expected behavior, with a few exceptions. Radiance
observations dominate the impact for the Southern Hemi-
sphere extratropics, with conventional data playing a strong
role in the Northern Hemisphere extratropics. AMSU-B and
conventional moisture observations show minimal impact
due to the dry metric used for the adjoint calculations as
well as the omission of moist processes from the adjoint
model itself. The anomalous finding of detrimental AMSU-
A impacts in the tropics is due to a known deficiency in
this version of the GEOS-5, where the geostrophic cou-
pling implied by background error correlations is improperly
specified near the equator.

[42] The observation impact is a noisy metric, and with
only a 1 month cycling period, the differences between
individual observation impacts for the three cases are not sta-
tistically significant at the 95% levels. The total impact of all
data types is also calculated for each of the three cases and
shown in Table 3. In the Northern Hemisphere extratropics
and tropics, there is not a statistically significant difference
between the three cases, but the Southern Hemisphere has

a statistically significant greater total observation impact for
the Double case compared to the Control and Perfect cases.

[43] Observation impacts can be increased by two causes.
One is that an observation has less error or is better uti-
lized so that the expected reduction of analysis error is
greater. Another is that the background error is greater so
that the observation is allowed to correct more. Greater back-
ground error can result from an increase of observation error,
especially when all observation errors are increased simul-
taneously. This last relationship may mitigate the reduc-
tion of beneficial impacts by worsening observations in
this way because observations are thereby allowed to do
more work. Since the background is affected by forecast
model error in addition to observation errors, a portion of
the background error covariance will remain unchanged as
observation errors are altered. Thus, the mitigation effect
as described should itself be reduced by the presence of
model error. If the observation error characteristics of a sin-
gle observation type were changed while keeping the error
characteristics of all other observation types unchanged, the
relative impact of different observation types might undergo
significant changes.

Table 3. Monthly Mean Observation Impacta

NH SH Tropics

Control –0.49 –0.51 –0.17
Perfect –0.49 –0.53 –0.18
Double –0.47 –0.60 –0.17

aJuly 2005 monthly mean total observation impact for all data
types, calculated for the dry energy norm estimated by a dry adjoint.
20ıN–90ıN (NH), 20ıS–90ıS (SH), and 20ıS–20ıN (Tropics).
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6. Discussion
[44] Observation errors have a notable impact on the

amount of work done by the data-assimilation system.
Unsurprisingly, the observation innovations and (to a lesser
degree) analysis increments show significantly increased
variance when observation error variances are increased.
Observation innovation d is changed both directly by the
observation error ingested in the current cycle and indirectly
by alterations to the forecast skill from the previous cycle, as

hddTi � QR + H QBHT (10)

where QR and QB are, respectively, the actual observation and
background error covariances that may differ from the cor-
responding matrices used by the DAS. One notable result
of these experiments is that changes to the forecast xf are
relatively small when R is altered by a large fraction. In
the OSSE, the observation errors are not temporally corre-
lated, so the forecast error that evolves from the previous
assimilation cycle is not correlated with the observation error
of the following cycle. In reality, some observation errors
may be temporally correlated [Daley, 1992], although this is
not accounted for by the GSI. The data-assimilation process
tends to damp out observation errors, particularly spatially
uncorrelated errors.

[45] The analysis increment statistics show significant
influence from observation error. However, the impact of
observation error on the analysis increment is considerably
smaller than the impact on observation innovation, due to
the very effective filtering of spatially uncorrelated observa-
tion errors by the GSI algorithm. The effect of observation
errors on the analysis error is smaller than the effect on anal-
ysis increment since the increment is designed to only reduce
the error in a statistical sense; i.e., not everywhere at every
time. If only a single data type is available in a region, the
portion of the observation error that is correlated will have
the greatest impact on the analysis quality. If multiple data
types are available and the observation error is not corre-
lated between data types, as in the OSSE, then the impact of
spatially correlated error will also be reduced. As the data
network becomes more sparse, the role of uncorrelated error
increases, as there is less opportunity for uncorrelated errors
from nearby observations to compete.

[46] In a statistically stable assimilation system, an equi-
librium must be obtained that balances the competing effects
of model error, assimilated observation error, error growth
or damping between cycle times, and the ingestion of useful
information from observations. Usually this implies that the
improvement to the analysis by ingesting observations is
balanced by the subsequent error growth during the forecast
that creates the next background [Daley and Menard, 1993].
In the Double case, this equilibrium is apparently more
complex since the analysis increments for some fields in
some regions of the globe actually increase the analysis error
with respect to the background error on average.

[47] The wind and temperature analysis fields show dif-
ferent responses to observation error, with a considerably
stronger response to increased observation errors in the wind
analysis field. While the conventional data types have fairly
similar temporal and spatial distributions of temperature and
wind observations (with the exception of satellite winds), the
distributions of satellite radiances differ significantly from

that of satellite winds. Satellite winds are associated with
clouds or water vapor features, but infrared radiance obser-
vations for channels that peak low in the atmosphere are
absent from cloudy regions. Data impacts can be greater
in the Southern Hemisphere both because it is winter dur-
ing the experimental period, implying greater variances
and synoptic-scale baroclinicity and therefore greater error
variances, and because there are fewer strongly weighted
conventional observations.

[48] As the model integrates forward in time, only a small
portion of the initial errors experience growth. Some errors,
particularly those with small spatial scales, may be effec-
tively filtered out by the model. Most errors will project
onto modes that are damped or that experience only very
slow growth, but a fraction of errors will project onto modes
that grow rapidly [Ehrendorfer and Errico, 1995]. Regional
variation is seen for the impact of observation errors on the
forecast skill, reflecting the differences in both the dynamics
of error growth and the nature of the observational network
around the globe. In the tropics, the initial error growth
rate is very high due to convective processes [Hodyss and
Majumdar, 2007] but these errors saturate quickly on a local
scale. Thus, the forecast skill in the tropics is almost com-
pletely insensitive to observation errors, as these errors are
rapidly overwhelmed by those in the model physics.

[49] In the midlatitudes, error growth is modest and local-
ized during the first day of the forecast, but the rate of error
growth then increases during the second and third days as the
errors spread into the mesoscale and synoptic scales. Errors
in the midlatitudes do not saturate within the 5 day forecast
[Hodyss and Majumdar, 2007]. The significant differences
seen in the extratropical analysis error in the three test cases
are muted in the 120 h forecast error fields.

[50] There are several factors that influence the obser-
vation impact when observation errors are increased. The
magnitude of the observation impact indicates the amount
of work done by the observations when adjusting the
background field. If the background field had no error,
there would be no possible improvement, and the obser-
vation impact would be zero or detrimental to the model
state. In a properly functioning data-assimilation system,
the net (average) influence of observations should be to
improve the quality of the analysis compared to the back-
ground field, although many of the observations may have
a neutral or detrimental effect on the analysis state [Gelaro
et al., 2010].

[51] When the analysis error is increased due to inges-
tion of greater observation errors, these additional errors
grow during forward integration and increase error in the
background field of the following cycle time. The total
observation impact may then be increased as there is more
work to be done to correct the background field, even though
the observations themselves are degraded by larger observa-
tion error variance. The increase in observation impact seen
in the Southern Hemisphere extratropics as the observation
error is increased is an example of this effect. Although the
analysis error is also increased in the Northern Hemisphere
and tropical regions, the total observation impact is not sig-
nificantly affected in these regions. It is speculated that this
may be due to the more nonlinear growth of errors where
convective processes play a strong role in the tropics and
summer hemisphere.
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[52] Although the OSSE framework allows for direct
manipulation of the observation errors, there are some limi-
tations of the system. One caveat of the Perfect observation
case is that the observations are not completely free of error.
While the observations in the Perfect case are drawn directly
from the truth, there are intrinsic errors of representativeness
due to the difference in model resolution and due to temporal
interpolation that introduces errors. It is expected that these
errors are much smaller than observation errors that occur in
the real world because the spatial resolutions of the Nature
Run and assimilation grids are not so very different.

[53] When the observation and background error covari-
ances specified in the GSI are not the true covariances, the
DAS results are sub-optimal. The specified covariances are
only approximations to the true ones whether the GSI is
applied to real observations or the OSSE context (e.g., the
true observation error covariance is definitely not diagonal
as assumed by GSI). Although the degrees of approximation
may differ, for the OSSE Control case, the added observation
errors were tuned in an attempt to make various performance
statistics similar to those for the Real case, and thus the
degrees of sub-optimality of those two cases may be similar.
For the other experimental cases, including the Double GSI
Adjusted case, this is likely not true. In any case, however,
the skill metrics obtained should be considered simply as
upper bounds on what their values would be were GSI tuning
truly optimal.

[54] A caveat of these experiments is that the added
observation errors may not have completely realistic char-
acteristics. Although the synthetic observation errors have
been extensively calibrated, it is possible that some errors
have been adjusted in ways that are not realistic in order
to compensate for other deficiencies of the OSSE. For
example, synthetic bias has not been added to the observa-
tions because the portion of bias that is assumed by the DAS
is removed by its bias-correction algorithm. However, bias
that is less well known likely exists in reality, but this bias is
difficult to simulate precisely because it is not well observed
or understood.

[55] One motivation of this study was to determine if it
is possible to manipulate the observation errors in order
to “calibrate” the forecast skill statistics of the OSSE
system. The results show that unrealistically large increases
in the observation error would be necessary in order to
appreciably change the forecast skill of the OSSE. In fact,
one implication is that if the only metrics of interest for a par-
ticular OSSE are the forecast skill and observation impacts,
the synthetic errors may be eliminated entirely with little
effect on the experimental results. However, if the analy-
sis quality, observation innovation, or analysis increments
are of concern, the observation errors must be carefully
calibrated. This result may depend on the amount of model
error in the OSSE system, and it is possible that observa-
tion error may play a stronger role in the forecast skill of
a fraternal or identical twin experiment, where model error
is minimal.

[56] This work also quantifies the effects of significant
mismatches between the actual observation error covari-
ances and the error covariances assumed by the data-
assimilation system. Decreasing the actual observation error
covariances while holding the DAS observation error covari-
ances constant results in modest reductions in the total error

of the analysis state, but the effects on the forecast skill
are minimal.

Appendix A: Theoretical Relationships
Among Errors

[57] Some simple relations between the analysis error and
the errors of the background state and the ingested obser-
vations can be found both for the “ideal” case in which the
error covariances employed by the DAS are accurate and for
the more realistic case in which there is a mismatch between
the true error covariances and the covariances assumed by
the DAS.

[58] The analysis state xa can be expressed as

xa = xb + K[yo – H(xb)] (A1)

where the background state xb is adjusted by the ingestion
of observations yo using the operation operator H and the
Kalman gain K. The gain is expressed as

K = (B–1 + HTR–1H)–1HTR–1 = BHT(HBHT + R)–1 (A2)

where B and R are the specified, but not necessarily true,
background error and observation error covariance matrices
and H is a linearized form of H.

[59] Define errors of the analysis state, ea, the background
state, eb, and the observation errors, eo in relation to the true
state xt as defined in the analysis subspace.

ea = xa – xt (A3)

eb = xb – xt (A4)

eo = yo – H(xt) (A5)

Note that eo includes both instrument and representativeness
errors and has a different length (is defined in a different
mathematical space) than the vectors ea or eb.

ea = eb + K[eo – Heb] (A6)

Assuming that observation and background errors are uncor-
related, and noting that KH is symmetric, covariances of the
analysis error can be constructed as

heaeT
a i = (I – KH)hebeT

b i(I – KH) + KheoeT
o iK

T (A7)

where the angle brackets indicates a sample mean or expec-
tation based on that sample.

[60] If the B and R assumed by the DAS are the true
ones, then the K employed is the optimal one, yielding the
optimal analysis error covariance A. The true covariances
corresponding to these prescribed ones will be denoted by a
tilde:

heaeT
a i = QA (A8)

hebeT
b i = QB (A9)

heoeT
o i = QR (A10)

These are related by

A = (B–1 + HTR–1H)–1 (A11)

QA = A
�
B–1 QBB–1 + HTR–1 QRR–1H

�
A (A12)

It can be seen that if QB = B and QR = R, then QA = A.
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[61] First, consider the ideal case where QB = B and
QR = R, for which the data-assimilation system performance
is expected to be optimal [Daley, 1991]. In a cycling data-
assimilation procedure such as GSI, QB is actually an implicit
function of QR since it depends on the quality of the previous
analysis. Thus, increasing QR is expected to increase QB and
thereby further increase QA to some degree. If QB also reflects a
sizeable contribution by forecast model error, as it generally
does in practice, then the additional influence on QA through
QB changes will be diminished.
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